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Interest in the use of non-contacting forces between spacecraft has prompted

many studies of the dynamics of such formations. While the introduction

of such a force potentially complicates the analysis of these systems, inte-

grals of motion still exist for idealized cases. These integrals not only define

relationships between the states at two different times, but also provide a

means to describe the error introduced through application of simplifying

assumptions to the formation dynamics. This paper develops expressions of

two integrals of motion for a planar, two-vehicle formation, and examines

their evolution under several assumptions pertaining to the motion of the

formation center of mass.

Nomenclature

A, B = Constraint matricies

a1, a2 = Semimajor axes of spacecraft

CE = Total mechanical energy

CH = Total angular momentum magnitude

e1, e2 = Eccentricities of spacecraft

ex, ey, ec, eρ, eγ, eθ = Basis vectors

h1, h2 = Angular momentum vectors of individual spacecraft

L = Lagrangian of dynamics system

m1, m2, M = Masses of individual spacecraft, sum of masses

q = Generalized coordinates
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q̃ = Constrained generalized coordinates

r1, r2, rc, ρ = Position vectors

r1, r2, rc, ρ = Magnitudes of position vectors

R = Interaction potential energy

T , V = Total kinetic, potential energies

x = System state of original system

x̄ = System state of simplified system

γ, θ = Angles describing orientation of formation

λ1, λ2 = Lagrange multipliers

µ = Gravitational parameter

I. Introduction

Studying the relative motion of multiple spacecraft in orbit about a common central

body has proven useful for such tasks as rendezvous and docking, in-orbit inspection, and

mission-enabling formation flight. An examination of the effects of independent control

inputs acting on individual spacecraft informs mission planning and controller design by

predicting the evolving Keplerian orbits of the vehicles through a maneuver. This classic

approach of utilizing external forces as control inputs allows for the arbitrary reconfiguration

of the multi-body system. Augmenting the dynamics of a spacecraft formation with an

action-at-a-distance force internal to the multi-body system presents a unique opportunity

by enabling control of the relative motion of the spacecraft while maintaining certain integrals

of motion. This paper examines the dynamics of a planar, two-vehicle formation in orbit

about a common central body with such an internal force acting between the spacecraft.

Through this study, integrals of motion are identified and used to describe relationships

bounding the system state trajectory and to evaluate a common assumption regarding the

motion of the formation center of mass.

While the unperturbed motion of a spacecraft in a Keplerian orbit about a central body

is well-known, analytical expressions of its state trajectory do not exist in the presence of

arbitrary perturbations. At least two related approaches begin to address this problem. The

first approach identifies conserved quantities relating the states, such as with the Jacobi

Integral placing bounds on the trajectory of a point mass in the Circular Restricted Three-

Body Problem.1 The second approach linearizes the system’s dynamics about an assumed

center of mass trajectory, resulting in a set of first-order ordinary differential equations.2

These simplifying assumptions can be framed as artificially enforcing system state behavior

in contrast with the natural known behavior of the unmodified dynamic system. Both of

these approaches reduce the total number of states required to represent the dynamics of
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the system, simplifying controller design and potentially bounding the state trajectory. We

address both of the above approaches through the development of a Lagrangian dynamics

model. Through this method, integrals of the motion representing conserved quantities can

quickly be identified and applied to the example system. In addition to reducing the number

of states of the system, these conserved quantities of the original system also provide a

means to evaluate the applicability of simplifying assumptions. Applying such an assumption

regarding the motion of the system is equivalent to enforcing a constraint on its dynamics,

and the resulting hypothetical constraint force potentially modifies the otherwise conserved

integrals of motion of the original system. Several groups have investigated the specific topic

of energy- and momentum-conserving integration schemes.3–6 While these methods could be

employed in the analysis of the two-vehicle system under discussion, this paper focuses on the

interpretation of the relationship between the error introduced in the generalized coordinates

and the conserved quantities under a common simplifying assumptions regarding the center

of mass motion of the formation.

The paper begins by developing the initial mathematical model of the planar, two-vehicle

system dynamics and identifies relevant integrals of motion in section II. Subsequently, sec-

tion III examines how these integrals of motion translate into equations relating the oscu-

lating orbital elements of the individual vehicles. Section IV then examines some possible

assumptions regarding the evolution of the system’s state. The impact of a center-of-mass-

motion constraint is then examined in terms the effect upon the integrals of motion derived

from the original system. The paper then supports the theoretical development through a

simulated example formation in section V.

II. Dynamics Model Description

Consider the following planar system describing two masses, m1 and m2, relative to a

large central body. Their locations are described by r1 and r2 respectively, and their center

of mass is defined by the vector rc. The vector ρ points from m1 to m2. Mathematically, we

can describe these vectors in terms of each other.

rc =
1

M
(m1r1 +m2r2) = rcec ρ =r2 − r1 = ρeρ

r1 =rc −
m2

M
ρ r2 =rc +

m1

M
ρ (1)

From these equations, we can define the inertial time derivatives of r1 and r2 in terms of

inertial time derivatives of rc and ρ.

ṙ1 =ṙc −
m2

M
ρ̇ ṙ2 =ṙc +

m1

M
ρ̇ (2)
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Figure 1. Layout of m1 and m2 relative to a central body.

Both masses are gravitationally attracted to the central body and experience a conservative

force directed along the vector eρ pointing between the two masses. This force is derived

from the potential function R and is assumed to only depend upon the relative separation

distance ρ.

A. Deriving Equations of Motion

The Lagrangian L is formed from the kinetic and potential energy expressions, T and V .

T =
1

2
m1ṙ1 · ṙ1 +

1

2
m2ṙ2 · ṙ2 (3)

V = −µ
(
m1

r1

+
m2

r2

)
+R (4)

L = T − V =
1

2
m1ṙ1 · ṙ1 +

1

2
m2ṙ2 · ṙ2 + µ

(
m1

r1

+
m2

r2

)
−R (5)

The position vectors of Eq. (1) can be expressed in terms of scalar components multi-

plying basis vectors the depicted in Fig. 1.

r1 =
(
rc −

m2

M
ρ cos γ

)
ec −

m2

M
ρ sin γeθ r2 =

(
rc +

m1

M
ρ cos γ

)
ec +

m1

M
ρ sin γeθ (6)

Similarly, we can write the inertial velocity vectors in terms of orthogonal basis vectors ec
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and eθ.

ṙ1 =
(
ṙc −

m2

M

(
ρ̇ cos γ − ρ

(
θ̇ + γ̇

)
sin γ

))
ec (7)

+
(
rcθ̇ −

m2

M

(
ρ̇ cos γ + ρ

(
θ̇ + γ̇

)
sin γ

))
eθ

ṙ2 =
(
ṙc +

m1

M

(
ρ̇ cos γ − ρ

(
θ̇ + γ̇

)
sin γ

))
ec (8)

+
(
rcθ̇ +

m1

M

(
ρ̇ cos γ + ρ

(
θ̇ + γ̇

)
sin γ

))
eθ

Consider the following choice of generalized coordinates:

q =
[
ρ γ rc θ

]T
(9)

We can define the lengths of the vectors r1 and r2 in terms of q.

r1 =r1 (q) = (r1 · r1)1/2 =

(
q2

3 − 2
m2

M
q1q3 cos q2 +

(m2

M
q1

)2
)1/2

r2 =r2 (q) = (r2 · r2)1/2 =

(
q2

3 + 2
m1

M
q1q3 cos q2 +

(m1

M
q1

)2
)1/2

(10)

The expressions for the energy terms and Lagrangian from Eqs. (3), (4), and (5) are then

rewritten in terms of the generalized coordinates.

T (q, q̇) =
1

2

(
M
(
q̇2

3 + q2
3 q̇

2
4

)
+
m1m2

M

(
q̇2

1 + q2
1 (q̇2 + q̇4)2)) (11)

V (q) = −µ
(
m1

r1

+
m2

r2

)
+R (q) (12)

L (q, q̇) =
1

2

(
M
(
q̇2

3 + q2
3 q̇

2
4

)
+
m1m2

M

(
q̇2

1 + q2
1 (q̇2 + q̇4)2))+ µ

(
m1

r1

+
m2

r2

)
−R (q) (13)

The equation of motion describing the dynamics of the generalized coordinate qj for a system

acted upon only by conservative forces is given by the Lagrange’s equation:

d

dt

∂

∂q̇j
L − ∂

∂qj
L = 0 (14)

Applying Eq. (14) to Eq. (13) provides the set of second-order differential equations de-
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scribing the dynamics of the system.

q̈1 − q1 (q̇2 + q̇4)2 +
µ

r3
1

(m2

M
q1 − q3 cos q2

)
+
µ

r3
2

(m1

M
q1 + q3 cos q2

)
+

M

m1m2

∂

∂q1

R = 0 (15)

q2
1 (q̈2 + q̈4) + 2q1q̇1 (q̇2 + q̇4) + µ

(
1

r3
1

− 1

r3
2

)
q1q3 sin q2 = 0 (16)

q̈3 − q3q̇
2
4 + µ

m1m2

M

(
1

r3
1

(
M

m2

q3 − q1 cos q2

)
+

1

r3
2

(
M

m1

q3 + q1 cos q2

))
= 0 (17)

q2
1 (q̈2 + q̈4) + 2q1q̇1 (q̇2 + q̇4) +

M2

m1m2

(q3q̈4 + 2q3q̇3q̇4) = 0 (18)

B. Integrals of Motion

Deriving Eqs. (15), (16), (17), and (18) by a Lagrangian approach allows for quick identifi-

cation of two integrals of motion. One of these integrals corresponds to the conservation of

mechanical energy. Because the potential energy, V , only depends upon the positions of m1

and m2, its time derivative can be written in terms of inertial velocities multiplying partials

of V with respect to the position vectors.

d

dt
V = ṙ1 ·

∂V
∂r1

+ ṙ2 ·
∂V
∂r2

(19)

The forces resulting from the potential function are also related to these partial derivatives

of V .

m1r̈1 =− ∂V
∂r1

m2r̈2 =− ∂V
∂r2

(20)

Incorporating these results into the expression time derivative of T reveals a relation between

the derivatives of the kinetic and potential energy.

d

dt
T =m1ṙ1 · r̈1 +m2ṙ2 · r̈2

=− dr1

dt
· ∂V
∂r1

− dr2

dt
· ∂V
∂r2

=− dV
dt

(21)

Summing the expressions for the time derivative of the kinetic and potential energies shows

that the total energy, CE, is conserved.

d

dt
(T + V) =

d

dt
CE = 0 (22)
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Equation (22) defines CE as a constant that can be related at different times in the state

trajectory time history.

CE =
1

2

(
M
(
q̇2

3 + q2
3 q̇

2
4

)
+
m1m2

M

(
q̇2

1 + q2
1 (q̇2 + q̇4)2))− µ(m1

r1

+
m2

r2

)
+R (q) (23)

The lack of q4 in Eq. (13) suggests another integral of motion. Writing Eq. (14) for q4

reveals this second time-independent quantity.

d

dt

∂

∂q̇4

L − ∂

∂q4

L =
d

dt

∂

∂q̇4

L = 0 (24)

This equation corresponds to the conservation of total angular momentum of the system.

CH =
∂

∂q̇4

L = Mq2
3 q̇4 +

m1m2

M
q2

1 (q̇2 + q̇4) (25)

While neither Eq. (23) nor Eq. (25) should come as a surprise, the process of defining

these quantities in terms of the generalized coordinates will prove useful in the examination

of the nonlinear system described by Eqs. (15), (16), (17), and (18).

III. Bounding System Output

By defining time-independent relationships between the generalized coordinates, CE and

CH potentially provide a means to glean information about the system at a later time

without the need to numerically or analytically integrate the equations of motion. Consider,

for example, the evolution of the semimajor axes of m1 and m2 through the application of

the forces associated with R. Assuming a mission designer has control over the input of

this conservative force acting on the two masses, an orbit-change maneuver affecting both

vehicles would result from applying the force for only a limited duration. The semimajor

axes of m1 and m2 are defined by the mechanical energy associated with the inertial velocity

and gravitational potential of mass individually in the corresponding two-body problem.7

mi

(
ṙi · ṙi

2
− µ

ri

)
= −µmi

2ai
(26)
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The total mechanical energy of the system can then be rearranged to include terms associated

with the osculating semimajor axis ai.

CE =m1

(
ṙ1 · ṙ1

2
− µ

r1

)
+m2

(
ṙ2 · ṙ2

2
− µ

r2

)
+R

=− µ

2

(
m1

a1

+
m2

a2

)
+R (27)

As CE does not vary with time, this equation can be used to relate changes in the interaction

potential, R, to changes in the semimajor axes of m1 and m2.

−µ
2

(
m1

a1,0

+
m2

a2,0

)
+R0 = −µ

2

(
m1

a1,f

+
m2

a2,f

)
+Rf (28)

Another way to interpret Eq. (27) is to recognize that the the combination of a1, a2, and R

need to exist on a surface specified by the constants CE, µ, m1, and m2. Figure 2 provides

an example surface generated by the simulation parameters from Table 1.

A similar derivation relates the total angular momentum of the system to the semimajor

axes and orbital eccentricities of m1 and m2 under the assumptions of two-body motion. The

eccentricity of each mass is defined by an equation depending upon its individual angular

momentum and semimajor axis.7

ei =

√
1− hi · hi

µm2
i ai

(29)

To total angular momentum of the system is also defined by summing up the contribu-

tions from the individual vehicles. This allows for the expression of the constant angular

momentum magnitude, CH , in terms of semimajor axis and eccentricity parameters.

CH =
√
µa1m2

1 (1− e2
1) +

√
µa2m2

2 (1− e2
2) (30)

Similar to the relation between Eq. (27) and Fig. 2, Eq. (30) describes a hyperdimensional

surface parameterized by a1, a2, e1, and e2 for a given set of constants CH , µ, m1, and m2.

The conservation of energy and angular momentum can be expressed in either generalized

coordinates, as in Eqs. (23) and (25), or in terms of a set of outputs, such as the selection

of osculating orbital elements in Eqs. (27) and (30). In either case, these equations provide

a means to analytically bound the motion of the system, as any combination of states or

outputs violating these conservation laws for a given set of initial conditions cannot be

reached.
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Figure 2. Surface and contour plot of interaction potential R in relation to semimajor axes a1

and a2 using the parameters from Table 1.
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IV. Implications for Simplifying Assumptions

Integrals of motion also may be utilized when attempting to simplify the mathematical

expression of the dynamics of a system. By defining conserved quantities, such as CH for

Eqs. (15), (16), (17), and (18), the time derivative of a particular state can be defined in

terms of the remaining states and their time derivatives and can be substituted into the

equations of motion, which effectively reduces the number of differential equations to be

solved. Mathematically, a similar process occurs when applying constraints to the system

dynamics. Defining specified states through constraint equations removes the need to solve

for those states by other means. Specifying such constraints, however, generally does not

preserve the conservation laws defining the integrals of motion derived for the unconstrained

system.

A common set of simplifying assumptions for the relative motion of two spacecraft in

orbit restricts the motion of the formation center of mass to follow a defined path, usually a

Keplerian orbit.8,9 This approach is similar to utilizing the Clohessy-Wiltshire equations for

relative motion in near-circular orbits.2 As a result, the relative motion of the two vehicles

can be examined independently from the dynamics of the center of mass. The quality

and applicability of such constraints could be evaluated by examining the evolution of the

integrals of motion of the unconstrained system. Kim and Schaub formulate this problem

in terms of orbital element differences and investigate angular momentum conservation for a

variety of reference trajectories, including the enter of mass motion and the mass-averaged

orbital elements.10 As these quantities are not necessarily conserved in the constrained

system, their variation is linked to the error between the constrained and unconstrained

states.

The equations of motion of a constrained system are derived utilizing Lagrange multipli-

ers.11 When m constraints applied to a system with n generalized coordinates are linear in

the constrained state derivatives, the constraint equations take the following form:

n∑
j=1

Akj q̇j +Bk =0 k =1, 2, ...,m (31)

The equations of motion of the state qj of this constrained system then follow the constrained

form of Lagrange’s equation.

d

dt

∂

∂q̇j
L − ∂

∂qj
L =

m∑
k=1

λkAkj (32)

The λk values correspond to the constraint forces and torques applied to the system dynam-

ics.11
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A. Constrained Equations of Motion

Consider the same two-vehicle formation in orbit about a common central body as depicted

in Fig. 1, but with the addition of two constraint equations defining the time history of the

center of mass motion described by q3 and q4.

q3 =q̃3 q4 =q̃4 (33)

As the q̃3 and q̃4 are assumed to be known functions of time, the time derivatives of q3 and

q4 are also defined. Reformatting these two constraints results in a set of linear equations

conforming to the format of Eq. (31).

Aq̇ +B =

 0 0 1 0

0 0 0 1

 q̇ −
 ˙̃q3

˙̃q4

 = 0 (34)

As the matrix A involves only the states q3 and q4, Eqs. (15), (16), and (34) define the

dynamics of the constrained system. The λk values are defined through Eq. (32).

λ1 =¨̃q3 − q̃3
˙̃q2
4 + µ

m1m2

M

(
1

r̃3
1

(
M

m2

q̃3 − q1 cos q2

)
+

1

r̃3
2

(
M

m1

q̃3 + q1 cos q2

))
(35)

λ2 =q2
1

(
q̈2 + ¨̃q4

)
+ 2q1q̇1

(
q̇2 + ˙̃q4

)
+

M2

m1m2

(
q̃3

¨̃q4 + 2q̃3
˙̃q3

˙̃q4

)
(36)

In the case where the system naturally followed the constraints imposed by Eq. (34), λ1 and

λ2 would be zero for all time. An examination of Eq. (36) with the definition of CH given

by Eq. (25) defines the time-dependence of the CH integral of motion of the unconstrained

system.

d

dt

∂

∂q̇4

L − ∂

∂q4

L =
d

dt
CH = λ2 (37)

Equation (37) demonstrates that for the constrained system and a general choice of q̃3 and

q̃4 trajectories resulting in a non-zero λ2, angular momentum is not conserved.

B. Constrained Equations of Motion Conserving CH

A possible further constraint to be applied to the original unconstrained system would enforce

the conservation of angular momentum. Requiring λ2 to be zero effectively enforces this

constraint. Substituting Eq. (34) into Eq. (25) and rearranging provides an expression of

q̇2 in terms of only q1 and known quantities. This differential equation and the constrained

version of Eq. (15) define the state dynamics of the constrained system conserving angular
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momentum.

q̈1 − q1

(
q̇2 + ˙̃q4

)2
+
µ

r̃3
1

(m2

M
q1 − q̃3 cos q2

)
+
µ

r̃3
2

(m1

M
q1 + q̃3 cos q2

)
+

M

m1m2

∂

∂q1

R = 0 (38)

q̇2 =
M

q2
1m1m2

(
CH −Mq̃2

3
˙̃q4

)
− ˙̃q4 (39)

While λ2 is necessarily zero in this formulation, λ1 is still allowed to be a non-zero value and

can still function as a measure of the applicability of the constraining assumptions.

C. Integrals of Motion and Assumption Quality

Conservation laws, such as those defining CE and CH in Eqs. (23) and (25), are potentially

useful for bounding the state or output error of a system under a set of simplifying assump-

tions. As demonstrated in the derivation of Eq. (37), these integrals of motion of the original

system are not necessarily conserved in the simplified version. Additionally, the true error in

these ‘conserved’ quantities is directly available for a given state trajectory by evaluating the

quantity at a given time and subtracting the evaluation at the simulation initial conditions.

For a system conserving energy and angular momentum, this error equation takes a

simple form. The true state, x (t) =

[
qT q̇

T
]T

, conserves these values for all time, while

the state under the simplified system, x̄ (t) =
[
q̄T ˙̄qT

]T
, does not necessarily do so.

 ∆CH (t)

∆CE (t)

 =

 CH (x̄ (t))

CE (x̄ (t))

−
 CH (x (t))

CE (x (t))

 =

 CH (x̄ (t))− CH (x̄ (t0))

CE (x̄ (t))− CE (x̄ (t0))

 (40)

Equations (23) and (25) can be linearized about the state x̄, effectively producing a linear

relationship of an exactly known error in CE and CH to small approximate errors in the

states of the simplified system. ∆CH (t)

∆CE (t)

 ≈
 ∂

∂q
CH

∂
∂q̇
CH

∂
∂q
CE

∂
∂q̇
CE


x̄

[x̄ (t)− x (t)]T =H (t) ∆x (t) (41)

V. Simulation Results

This section studies an example formation under an assortment of simplifying assump-

tions regarding the motion of the center of mass. The original system models a two-vehicle

formation with a constant force, K, acting along the separation vector in a nearly circular

orbit about the Earth with an altitude of 700 km. This particular forcing model simulates
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the interaction due to a 100 W Photonic Laser Propulsion (PLP) system acting between the

two vehicles.12,13 The parameters and initial conditions of the system are given by Table 1.

Table 1. Simulation parameters

µ 3.986× 105 km3/s2 K 0.223 N

m1 600 kg m2 600 kg

ρ0 100 km ρ̇0 0 km/s

γ0 π/2 rad γ̇0 0 rad/s

rc,0 6752 km ṙc,0 0 km/s

θ0 0 rad θ̇0 1.138× 10−3 rad/s

In addition to simulating the true dynamics of the system given by Eqs. (15), (16),

(17), and (18), two sets of additional simulations integrate the equations of motion with

particular constraints applied to the motion of the center of mass as described in subsection

A of section IV. The first set assumes that the center of mass travels on a Keplerian orbit

determined by its initial conditions. The second set assumes that the center of mass travels

on a path that it would follow for the same system without the internal force acting between

the two vehicles. The time histories of the motion of the center of mass for both of these

constrained sets of systems are available a priori, as they respectively represent the true

Keplerian motion of a single mass and the averaged Keplerian motion of two masses. Within

each of these two sets of assumptions regarding the motion of the center of mass, a further

constraint is optionally included to enforce conservation of angular momentum as described

in subsection B of section IV.

Figure 3 depicts the error in the system states of the constrained system where the

center of mass follows a Keplerian orbit. Similarly, Figure 4 depicts the error in the system

states of the constrained system where the center of mass follows the weighted average of

the Keplerian motion of the spacecraft without the PLP interaction. Each of these figures

individually indicates that the state error of the constrained system is relatively independent

of the decision to enforce conservation of angular momentum for the parameters and initial

conditions described in Table 1. Comparison of the two figures likewise indicates that while

both assumptions regarding the motion of the center of mass are similar in error magnitude

for the relative position states, ρ and γ, the constrained system producing Fig. 4 results in

lower state errors for the motion of the center of mass. Figure 5 interprets the state error

produced by the simulation in terms of the error in the orbital parameters a1, a2, e1, and e2.

While these four quantities do not alone allow for the full reconstruction of the system state,

they do highlight significant differences in the error introduced by the center of mass motion

assumptions. Utilizing the averaged natural orbital motion of the system in the absence of
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Figure 3. State errors due to simplifying the equations of motion by constraining the center
of mass to follow a Keplerian orbit and conserve angular momentum.
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Figure 4. State errors due to simplifying the equations of motion by constraining the center
of mass to follow its natural motion in the absence of PLP and conserve angular momentum.
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Figure 5. Errors in the semimajor axes a1 and a2 and eccentricities e1 and e2 due to the suite
of assumptions regarding center of mass motion and angular momentum conservation.
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the PLP input produces significantly lower errors in the evolution of the semimajor axes and

eccentricities of the simulated system.

Figure 6 describes the true angular momentum and mechanical energy errors, ∆CH and

∆CE, and their linear approximations obtained from the simulation results of Figs. 3 and 4

in combination with Eq. (41). The errors observed in the integrals of motion could also be

interpreted as how far the approximated motion drifts from the CE surface in Fig. 2 given

by Eq. (27) and the hyperdimensional surface defined by Eq. (30).

Figure 6. Comparing the true error of the integrals of motion, ∆CE and ∆CH , of the four
simplified systems to the linear approximation of the error given by (41)

A close correlation between the time histories of the true and linear approximation of

the error in these integrals of motion would indicate a valid linearizing approximation about

the state of the constrained system. By conserving the angular momentum of the system,

the system state is forced to conform to Eq. (25), and the corresponding combinations

of orbital elements of the vehicles must also follow the relation described by Eq. (30). If

similar constraints were imposed to conserve total energy, the same statements could be

made regarding the system state and orbital elements with respect to Eqs. (23) and (27).
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VI. Conclusion

While the differential equations describing the motion of a two-vehicle formation utilizing

a conservative, internal force in orbit about a common central body are yet to be solved for

analytically, integrals of motion exist for this system that bound the state trajectory. Two

specific integrals of motion corresponding to mechanical energy and angular momentum are

identified. As these time-invariant quantities remain conserved regardless of the choice of

generalized coordinates, they also describe relationships among a subset of the osculating

orbital elements of the vehicles.

In addition to relating system states at two distinct times, these conservation laws are

also potentially useful in evaluating formations under certain simplifying assumptions. En-

forcing the integrals of motion to remain time-invariant allows for the continued use of their

defining equations in the analysis of the simplified system state. Furthermore, the error of

these integrals of motion due to constraint forces are exactly known for a given state and

can be approximated by a linear relationship to the state error between the true and sim-

plified system. Furthermore, the induced error in the integrals of motion can be interpreted

as the distance to a hyperdimensional surface described by time-varying orbital elements.

While these two integrals of motion described cannot completely determine the error in

the individual states, they define mathematical relationships to which the error states must

adhere.
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